Model konseptual IMTA dan RIMTA pada budidaya lobster di karamba jaring apung (KJA)

  • Rokhmad Mohamad Rofiq Direktorat Jenderal Perikanan Budidaya, Kementerian Kelautan dan Perikanan, Jakarta, Indonesia
  • Muhammad Rifqi Direktorat Jenderal Perikanan Budidaya, Kementerian Kelautan dan Perikanan, Jakarta, Indonesia
Keywords: lobster, ecosystem approach, environmental services


In order to optimize the economic value of tropical lobster resources in Indonesian waters, it is important to immediately develop lobster culture, both of domestic farmers and businesses. Based on existing adoption of tropical lobster culture technology, the business segment on tropical lobster culture can be divided into two types, those are rearing stages should be implemented at the technical implementation unit (UPT) facilities of the Directorate General of Aquaculture Fisheries, while the next stages is the grow up of lobsters in the floating net cages can involve the local coastal community or farmers and businesses. Integrated Multi Tropic Aquaculture (IMTA) implementation on lobster cultivation both on unit and regional scale can realize the principle of sustainability, optimize resource utilization, increase the acceptance of farmers and community involvement, provide environmental services of extractive commodities and at the same time as the contribution of aquaculture fisheries in the mitigation of greenhouse gas emissions. Some extractive commodities that are potentially cultured with lobster are seaweed, shellfish, sea cucumbers and some types of low-level tropical fish. It takes research related to effective feed for seed and grow up and its management, optimal environmental parameters, cultivation methods, types of pests and diseases of lobsters and their treatment.


Download data is not yet available.


Ahmed N, Thompson S and Glaser M. 2018. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental Management 63:159-172. 267-018-1117-3.
Alexander KA, Potts TP, Freeman S, Israel D, Johansen J, Kletou S, Meland M, Pecorino D, Rebours C, Shorten M and Angel DL. 2015. The implications of aquaculture policy and regulation for the development of integrated multi-trophic aquaculture in Europe. Aquaculture 443:16-23. 10.1016/j.aquaculture.2015.03.005.
Alexander KA, Angel D, Freeman S, Israel D, Johansen J, Kletou D, Meland M, Pecorino D, Rebours C, Rousou M, Shorten M and Potts T. 2016. Improving sustainability of aquaculture in Europe: stakeholder dialogues on integrated multi-trophic aquaculture (IMTA). Environmental Science & Policy 55:96-106.
Alexander KA and Hughes AD. 2017. A problem shared: technology transfer and development in European integrated multi-trophic aquaculture (IMTA). Aquaculture 473:13-19. 029.
Anissah U, Pamungkas A, Waryanto dan Sukoraharjo SS. 2015. Uji efektivitas kompartemen dasar untuk pembesaran lobster pasir (Panulirus homarus) di Pantai Sepanjang, Kabupaten Gunung Kidul. Jurnal Kelautan Nasional 10(2):91-102.
[Bappenas] Badan Perencanaan dan Pembangunan Nasional. 2021. Penilaian kegiatan pembangunan ketahanan iklim sektor kelautan dan pesisir: subsektor pesisir. Bappenas. Jakarta.
Ben-Ari T, Neori A, Ben-Ezra D, Shauli L, Odintsov V and Shpigel M. 2014. Management of Ulva lactuca as a biofilter of mariculture effluents in IMTA system. Aquaculture 434:493-498. 2014.08.034.
Chary K, Aubin J, Sadoul B, Fiandrino A, Coves D and Callier MD. 2020. Integrated multi-trophic aquaculture of red drum (Sciaenops ocellatus) and sea cucumber (Holothuria scabra): assessing bioremediation and life-cycle impacts. Aquaculture 516(734621):1-17. culture.2019.734621.
Cubillo AM, Ferreira JG, Robinson SMC, Pearce CM, Corner RA and Johansen J. 2016. Role of deposit feeders in integrated multi-trophic aquaculture—a model analysis. Aquaculture 453:54-66. culture.2015.11.031.
Galasso HL, Lefebvre S, Aliaume S, Sadoul B and Callier MD. 2020. Using the dynamic energy budget theory to evaluate the bioremediation potential of the polychaete Hediste diversicolor in an integrated multi-trophic aquaculture system. Ecological Modelling 437(109296):1-10. https://doi. org/10.1016/j.ecolmodel.2020.109296.
Granada L, Lopes S, Novais SC and Lemos MFL. 2018. Modelling integrated multi-trophic aquaculture: optimizing a three trophic level system. Aquaculture 495:90-97.
Grosso L, Rakaj A, Fianchini A, Morroni L, Cataudella S and Scardi M. 2021. Integrated multi-trophic aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534(736268):1-11.
Handa A, Min H, Wang X, Broch OJ, Reitan KI, Reinertsen H and Olsen Y. 2012. Incorporation of fish feed and growth of blue mussels (Mytilus edulis) in close proximity to salmon (Salmo salar) aquaculture: implications for integrated multi-trophic aquaculture in Norwegian coastal waters. Aquaculture 356-357:328-341. 2012.04.048.
Hossain M, Mostafiz, Ahamed S, Hassan M, Ariful I, Abdul N, Enamul H and Akter T. 2021. Assessing cage culture potentiality of long whiskers catfish, Mystus gulio (Hamilton, 1822) in relation to climate change adaptation in Bangladesh coast. Journal of Applied Aquaculture 1-16. 1080/10454438.2021.1881683.
Israel D, Lupatsch I and Angel DL. 2019. Testing the digestibility of seabream wastes in three candidates for integrated multi-trophic aquaculture: Grey mullet, sea urchin and sea cucumber. Aquaculture 510:364-370.
[KKP] Kementerian Kelautan dan Perikanan. 2021a. BKIPM siapkan rencana kerja ekspor lobster ukuran konsumsi [internet]. Tersedia di: https://
[KKP] Kementerian Kelautan dan Perikanan. 2021b. KKP terus optimalkan potensi marikultur [internet]. Tersedia di:
Kleitou P, Kletou D and David J. 2018. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture 490:136-148.
Lamprianidou F, Telfer T and Ross LG. 2015. A model for optimization of the productivity and bioremediation efficiency of marine integrated multitrophic aquaculture. Estuarine, Coastal and Shelf Science 164:253-264.
Largo DB, Diola AG and Marababol MS. 2016. Development of an integrated multi-trophic aquaculture (IMTA) system for tropical marine species in southern cebu, Central Philippines. Aquaculture Report 3:67-76. https://
Nelson EJ, MacDonald BA and Robinson SMC. 2012. The absorption efficiency of the suspension-feeding sea cucumber, Cucumaria frondosa, and its potential as an extractive integrated multi-trophic aquaculture (IMTA) species. Aquaculture 370-371:19-25. ture.2012.09.029.
Neori A, Troell M, Chopin T, Yarish C, Crichley A and Buschmann AH. 2012. The need for a balance ecosystem approach to blue revolution aquaculture. Environment: Science and Policy for Sustainable Develoment 49(3):36-43.
Park M, Shin SK, Do YH, Yarish C and Kim JK. 2018. Application of open water integrated multi-trophic aquaculture to intensive monoculture: A review of the current status and challenges in Korea. Aquaculture 497:174-183.
Raul C, Pattanaik SS, Prakash S, Vidya SK and Bharti S. 2020. Greenhouse gas emissions from aquaculture systems [internet]. Tersedia di: https://
Reid GK, Chopin T, Robinson SMC, Azevedo P, Quinton M and Belyea E. 2013. Weight ratios of the kelps, Alaria esculenta and Saccharina latissima, required to sequester dissolved inorganic nutrients and supply oxygen for Atlantic salmon, Salmo salar, in integrated multi-trophic aquaculture systems. Aquaculture 408-409:34-46. ture.2013.05.004.
Rifqi M, Widigdo B, Wardiatno Y, Mashar A and Adianto W. 2020a. The daily variance of CO2 and CH4 emission from shrimp ponds. IOP Conference Series: Earth and Environmental Science 420 (2020) 012026. https://
Rifqi M, Widigdo B, Wardiatno Y and Mashar A. 2020b. CO2 and CH4 flux from the water-air interface of three shrimp culture technologies. AACL Bioflux 13(2):605-617.
Rosa J, Lemos MFL, Crespo D, Nunes M, Freitas A, Ramos F, Pardal MA and Leston S. 2020. Integrated multitrophic aquaculture systems – potential risks for food safety. Trends in Food Science & Technology 96:79-90.
Salin KR and Ataguba GA. 2018. Aquaculture and the environment: towards sustainability. In: Hai FI, Visvanathan C and Boopathy R. 2018. Sustainable Aquaculture. Springer Nature. Switzerland.
Sans-Lazaro C and Sanches-Jerez P. 2020. Regional integrated multi-trophic aquaculture (RIMTA): spatially separated, ecologically linked. Journal of Environmental Management 271(110921):1-6. j.jenvman.2020.110921.
Shi H, Zheng W, Zhang X, Zhu M and Ding D. 2013. Ecological–economic assessment of monoculture and integrated multi-trophic aquaculture in Sanggou Bay of China. Aquaculture 410-411:172-178. 10.1016/j.aquaculture.2013.06.033.
Shpigel M, Ben-Ari T, Shauli L, Odintsov V and Ben-Ezra D. 2016. Nutrient recovery and sludge management in seabream and grey mullet co-culture in integrated multi-trophic aquaculture (IMTA). Aquaculture 464:316-322.
Shpigel M, Shauli L, Odintsov V, Ben-Ezra D, Neori A and Guttman L. 2018. The sea urchin, Paracentrotus lividus, in an integrated multi-trophic aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): nitrogen partitioning and proportional configurations. Aquaculture 490:260-269. 02.051.
Sterling AM, Cross SF and Pearce CM. 2016. Co-culturing green sea urchins (Strongylocentrotus droebachiensis) with mussels (Mytilus spp.) to control biofouling at an integrated multi-trophic aquaculture site. Aquaculture 464:253-261.
Troell M, Joyce A, Chopin T, Noeri A, Buschmann AH and Fang JG. 2009. Ecological engineering in aquaculture – potential for integrated multi-tropic aquaculture (IMTA) in marine offshore systems. Aquaculture 297(1-4):1-9.
Valenti WC, Kimpara JM, Preto B de L and Moraes-Valenti P. 2018. Indicators of sustainability to assess aquaculture systems. Ecological Indicators 88:402-413.
Visch W, Kononets M, Hall POJ, Nylund GM and Pavia H. 2020. Environmental impact of kelp (Saccharina latissimi) aquaculture. Marine Pollution Bulletin 155(110962):1-12.
Yokohama H. 2012. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages — potential for integrated multi-trophic aquaculture. Aquaculture 372-375:28-38. /j.aquaculture.2012.10.022.
Yu LQJ, Mu Y, Zhao Z, Lam VWY and Sumaila UR. 2017. Economic challenges to the generalization of integrated multi-trophic aquaculture: An empirical comparative study on kelp monoculture and kelp-mollusk polyculture in Weihai, China. Aquaculture 471:130-139. culture.2017.01.015.
How to Cite
Rofiq, R., & Rifqi, M. (2021). Model konseptual IMTA dan RIMTA pada budidaya lobster di karamba jaring apung (KJA). Jurnal Pengelolaan Lingkungan Berkelanjutan (Journal of Environmental Sustainability Management), 5(1), 640-651.